
Bluetooth

BASIC! implements Bluetooth in a manner which allows the transfer of data bytes between an
Android device and some other device (which may or may not be another Android device).
Before attempting to execute any BASIC! Bluetooth commands, you should use the Android
"Settings" Application to enable Bluetooth and pair with any device(s) with which you plan to
communicate.
When Bluetooth is opened using the Bt.open command, the device goes into the Listen
Mode. While in this mode it waits for a device to attempt to connect.
For an active attempt to make a Bluetooth connection, you can use the Connect Mode by
successfully executing the Bt.connect command. Upon executing the Bt.connect command
the person running the program is given a list of paired Bluetooth devices and asked. When
the user selects a device, BASIC! attempts to connect to it.
You should monitor the state of the Bluetooth using the Bt.status command. This command
will report states of Listening, Connecting and Connected. Once you receive a "Connected"
report, you can proceed to read bytes and write bytes to the connected device.
You can write bytes to a connected device using the Bt.write command.
Data is read from the connected device using the Bt.read.bytes command; however, before
executing Bt.read.bytes, you need to find out if there is data to be read. You do this using the
Bt.read.ready command.
Once connected, you should continue to monitor the status (using Bt.status) to ensure that
the connected device remains connected.
When you are done with a particular connection or with Bluetooth in general, execute
Bt.close.
The sample program, f35_bluetooth, is a working example of Bluetooth using two Android
devices in a "chat" type application.

Bt.open {0|1}

Opens Bluetooth in Listen Mode. If you do not have Bluetooth enabled (using the Android
Settings Application) then the person running the program will be asked whether Bluetooth
should be enabled. After Bt.open is successfully executed, the code will listen for a device
that wants to connect.
The optional parameter determines if BT will listen for a secure or insecure connection. If no
parameter is given or if the parameter is 1, then a secure connection request will be listened
for. Otherwise, an insecure connection will be listened for. It is not possible to listen for either
a secure or insecure connection with one Bt.open command because the Android API
requires declaring a specific secure/insecure open.
If Bt.open is used in graphics mode (after Gr.open), you will need to insert a Pause 500
statement after the Bt.open statement.

Bt.close

Closes any previously opened Bluetooth connection. Bluetooth will automatically be closed
when the program execution ends.

Bt.connect {0|1}

Commands BASIC! to connect to a particular device. Executing this command will cause a list
of paired devices to be displayed. When one of these devices is selected the Bt.status will
become "Connecting" until the device has connected.
The optional parameter determines if BT will seek a secure or insecure connection. If no
parameter is given or if the parameter is 1, then a secure connection will be requested.
Otherwise, an insecure connection will be requested.

Bt.disconnect

Disconnects from the connected Bluetooth device and goes into the Listen status. This avoids
having to use Bt.close + Bt.open to disconnect and wait for a new connection.

Bt.reconnect

This command will attempt to reconnect to a device that was previously connected (during
this Run) with Bt.connect or a prior Bt.reconnect. The command cannot be used to
reconnect to a device that was connected following a Bt.open or Bt.disconnect command
(i.e. from the Listening status).
You should monitor the Bluetooth status for Connected (3) after executing Bt.reconnect.

Bt.status {{<connect_var>}{, <name_svar>}{, <address_svar>}}

Gets the current Bluetooth status and places the information in the return variables. The
available data are the current connection status (in <connect_var>), and the friendly name
and MAC address of your Bluetooth hardware (in <name_svar> and <address_svar>).
All parameters are optional; use commas to indicate omitted parameters (see Optional
Parameters).
If the connection status variable <connect_var> is present, it may be either a numeric variable
or a string variable. The table shows the possible return values of each type:

Numeric
Value

String Value Meaning

-1 Not enabled Bluetooth not enabled
0 Idle Nothing going on
1 Listening Listening for connection
2 Connecting Connecting to another

device
3 Connected Connected to another

device
4 Lost Connection lost and try

again
5 Failed Getting a connection

failed and try again

If the device name string variable <name_svar> is present, it is set to the friendly device
name. If your device has no Bluetooth radio, the string will be empty.

If the address string variable <address_svar> is present, it is set to the MAC address of your
Bluetooth hardware, represented as a string of six hex numbers separated by colons:
"00:11:22:AA:BB:CC".

OnBtStatus:
Interrupt label that traps if the status of the bluetooth connection has changed. BASIC!
executes the statements following the OnBtStatus: label until it reaches a
Bt.onStatus.resume.

Bt.onStatus.resume
Resumes execution at the point in the BASIC! program where the OnBtStatus: interrupt
occurred.

Bt.write {<exp> {,|;}} ...

Bt.utf_8.write {<exp> {,|;}} ...

Writes data to the Bluetooth connection.
If the comma (,) separator is used then a comma will be printed between the values of the
expressions.
If the semicolon (;) separator is used then nothing will separate the values of the expressions.
If the semicolon is at the end of the line, the output will be transmitted immediately, with no
newline character(s) added.
The parameters are the same as the Print parameters. This command is essentially a Print
to the Bluetooth connection, with two differences:

 Only one byte is transmitted for each character; the upper byte is discarded. Binary
data and ASCII text are sent correctly, but Unicode characters may not be.
If you need the full Unicode character set use Bt.utf_8.write.

 A line that ends with a semicolon is sent immediately, with no newline character(s)
added.

This command with no parameters sends a newline character to the Bluetooth connection.

Bt.read.ready <nvar>

Reports in the numeric variable the number of messages ready to be read. If the value is
greater than zero then the messages should be read until the queue is empty.

OnBtReadReady:

Interrupt label that traps the arrival of a message received on the Bluetooth channel (see
"Interrupt Labels"). If a Bluetooth message is ready (Bt.read.ready would return a non-zero
value) BASIC! executes the statements after the OnBtReady: label, where you can read and
handle the message. When done, execute the Bt.onReadReady.Resume command to
resume the interrupted program.

Bt.onReadReady.resume
Resumes execution at the point in the program where it was interrupted by the Bluetooth
Read Ready event.

Bt.read.bytes <svar>

Bt.utf_8.read.bytes <svar>

The next available message is placed into the specified string variable. If there is no message
then the string variable will be returned with an empty string ("").
Each message byte is placed in one character of the string; the upper byte of each character
is 0. This is similar to Byte.read.buffer, which reads binary data from a file into a buffer string.
If you need the full Unicode character set use Bt.utf_8.read.bytes.

Bt.device.name <svar>

Returns the name of the connected device in the string variable. A run-time error will be
generated if no device (Status <> 3) is connected.

Bt.set.UUID <sexp>

A Universally Unique Identifier (UUID) is a standardized 128-bit format for a string ID used to
uniquely identify information. The point of a UUID is that it's big enough that you can select
any random 128-bit number and it won't clash with any other number selected similarly. In this
case, it's used to uniquely identify your application's Bluetooth service. To get a UUID to use
with your application, you can use one of the many random UUID generators on the web.
Many devices have common UUIDs for their particular application. The default BASIC! UUID
is the standard Serial Port Profile (SPP) UUID: "00001101-0000-1000-8000-00805F9B34FB".
You can change the default UUID using this command.
Some information about 16 bit and 128 bit UUIDs can be found at:

http://farwestab.wordpress.com/2011/02/05/some-tips-on-android-and-bluetooth/

http://farwestab.wordpress.com/2011/02/05/some-tips-on-android-and-bluetooth/

	Bluetooth
	Bt.open {0|1}
	Bt.close
	Bt.connect {0|1}
	Bt.disconnect
	Bt.reconnect
	Bt.status {{<connect_var>}{, <name_svar>}{, <address_svar>}}
	OnBtStatus:
	Bt.onStatus.resume

	Bt.write {<exp> {,|;}} ...
	Bt.utf_8.write {<exp> {,|;}} ...
	Bt.read.ready <nvar>
	OnBtReadReady:
	Bt.onReadReady.resume

	Bt.read.bytes <svar>
	Bt.utf_8.read.bytes <svar>
	Bt.device.name <svar>
	Bt.set.UUID <sexp>

